第134回日本森林学会大会 発表検索
講演詳細
T3. 樹木根の成長と機能[Development and function of tree roots]
日付 | 2023年3月26日 |
---|---|
開始時刻 | 10:45 |
会場名 | Room 6 |
講演番号 | T3-5 |
発表題目 | 深層学習手法を用いた根圏画像からの細根抽出の性能比較 Comparison of deep learning programs for extracting fine roots from forest rhizosphere images |
要旨本文 | スキャナ法では土壌に埋設したアクリルボックスにフラットベッドスキャナを挿入しスキャンすることにより、定点で非破壊的に広範囲の土壌断面(根圏)を連続撮影することができる。この手法で取得した根圏画像から細根の領域を抽出することで、細根の面積や長さを算出し、細根動態を解析することができる。しかし、この処理過程では手動による細根抽出に膨大な時間を要し、また、人為的な抽出ミスも生じる。そのため近年、深層学習を用いた細根自動抽出手法が開発されている。 これらの手法は,根圏画像から細根を手動抽出した結果を学習させることにより、画像中のどの領域に根が存在するのかを自動的に推定するものである。しかし、これらの手法の検出特性はまだ十分に評価されていない。そこで本研究では、すでに公開されている複数の細根自動抽出手法について細根抽出性能の比較を行った。それぞれの手法で学習し、根圏画像の時系列データに対して抽出を行った結果を手動抽出結果と比較することにより、細根の成長・枯死が抽出できるかについて評価した。 |
著者氏名 | ○山形拓人1 ・ 池野英利2 ・ 木村敏文1 ・ 礒川悌次郎3 ・ 中路達郎4 ・ 大橋瑞江1 |
著者所属 | 1兵庫県立大学環境人間学部 ・ 2福知山公立大学情報学部 ・ 3兵庫県立大学工学部 ・ 4北海道大学北方生物圏フィールド科学センター |
キーワード | 細根, 深層学習, 画像解析 |
Key word | fine root, deep learning, image analysis |